Schwarze Löcher

Woher stammt der Begriff "Schwarzes Loch"?
Im Jahr 1967 hielt der US-amerikanische Physiker John Archibald Wheeler (1911-2008) in New York einen stark beachteten Vortrag. Er verkündete u.a., dass es nach den Einsteinschen Gleichungen möglich sei, dass ein "sterbender" Stern auf ein winziges Volumen mit einer riesigen Massendichte schrumpfen könnte. Aufgrund eines Zwischenrufs aus dem Auditorium führte er den Begriff "Schwarzes Loch" in die wissenschaftliche und öffentliche Diskussion ein. Wheeler war auch mit Einstein bekannt und u.a. mit an dem Manhattan-Projekt zum Bau der Atombombe beteiligt. Er verstarb am 13. April 2008 in New Jersey/USA.

Entstehung, Verhalten
Unter einem Schwarzen Loch versteht man - wie bereits erwähnt - ein Gestirn, dessen Massendichte und damit seine Gravitation so groß ist, dass die Fluchtgeschwindigkeit größer als die Lichtgeschwindigkeit ist. Daher kann nicht einmal Licht dieses Gestirn verlassen.

In diesem Zusammenhang spielt der Begriff des Schwarzschild-Radius eine wichtige Rolle. Unter dem Schwarzschild-Radius versteht man den Radius eines Objekts (Gestirns), den er erreichen muss, damit auf seiner Oberffläche die Fluchtgeschwindigkeit gleich der Lichtgeschwindigkeit wird. Die Fluchtgeschwindigkeit beispielsweise der Erde - also die Geschwindigkeit, die ein Körper auf der Erdoberfläche besitzen muss, um das Schwerefeld der Erde zu verlassen -beträgt 11,186 km/s.

Der Schwarzschildradius der Erde beträgt ca. 0,9 cm und der von der Sonne rund 2,952 km. Sofern die Sonne bzw. die Erde auf diese Größe "kollabieren" würden, wären sie schwarze Löcher.

Schwarze Löcher selber sind unsichtbar, daher rührt auch sein Name. Schwarze Löcher können daher auch nicht direkt beobachtet werden. Ihre Existenz lässt sich nur über Auswirkungen auf ihre Umgebung nachweisen. So strahlt Materie, die sich auf dem Weg in ein Schwarzes Loch befindet, neben sichtbaren Licht u.a. auch extrem starke Röntgenstrahlung ab. Außerdem beeinflussen sie das Verhalten anderer Gestirne in ihrer Umgebung. So kann man aus der Rotationsgeschwindigkeit von Sternen in verschiedenen Abständen z.B. auf die Existnz einer extrem großen Masse schließen.

Allerdings sollen Schwarze Löcher über die - nach dem englischen Astrophysiker Stephen William Hawking genannte - Hawking-Strahlung zerstrahlen. Diese Strahlung ist jedoch so gering, dass sie im Hintergrundrauschen der vom Urknall herrührenden Hintergrund-Strahlung des Alls verschwindet. Die Zeit, nach der ein Schwarzes Loch zerstrahlt sein würde, liegt nach Schätzungen bei der nicht mehr vorstellbaren Zeit von ca. 1080 Jahren - das ganze All dagegen ist rund 1,3·1010 Jahre alt. Diese extrem lange Zerfallszeit rührt daher, dass die Lebensdauer eines Schwarzen Lochs mit der dritten Potenz seiner Masse ansteigt.
Sehr viel kürzer wäre allerdings die Lebensdauer von kleinsten Schwarzen Löchern, die z.B. bei Experimenten im CERN-Beschleuniger entstehen könnten. Ihre Lebensdauer läge infolge des Zerfalls über die Hawking-Strahlung im Bereich von 10-26 Sekunden, also 1 dividiert durch eine 1 mit 26 Nullen. Aber die Theorie der Hawking-Strahlung konnte bisher nicht experimentell nachgewiesen werden. Neueste Erkenntnisse deuten darauf hin, dassSchwarze Löcher mit Milliarden von Sonnenmassen bereits eine Milliarde nach dem Urknall existierten, was bisher große Rätsel aufgibt.
Man unterscheidet stellare Schwarze Löcher und super-massenreiche Schwarze Löcher.

Stellare Schwarze Löcher
Die stellaren Schwarzen Löcher sind das wahrscheinliche Ende einer Sonne, die als Supernova explodiert war, während der übrig gebliebene Rest dann zu einem Schwarzen Loch kollabiert ist. Das aber geschieht nur bei Sternen, die eine Masse von mehr als dem 8- bis 10-fachen unserer Sonne besitzen. Unsere Sonne wird wohl, wie bereits erwähnt, aufgrund ihrer Masse als "Weißer Zwerg" enden.

Super-massenreiche Schwarze Löcher
Die super-massenreichen Schwarzen Löcher dagegen besitzen Massen, die das Millionen- bis Milliardenfache der stellaren Schwarzen Löcher besitzen können. Sie befinden sich in den Zentren von Galaxien. Ihre Entstehung und Entwicklung ist bisher noch nicht ausreichend geklärt.
Ein Schwarzes Loch befindet sich im Zentrum des Andromeda-Nebels, einer rund 2,5 Mio. Lichtjahre entfernten Galaxie. Dieses Schwarze Loch besitzt eine Masse von ca.140 Mio. Sonnenmassen. Um dieses Loch kreist in einer Entfernung von nur etwa 1 Lichtjahr eine Scheibe bestehend aus jungen, heißen blauen Sternen. Nach dem derzeitigen Wissensstand dürften sie dort gar nicht sein, da die Gravitationskräfte des Schwarzen Lochs sie an sich längst zerrissen haben müssten. Derzeit gibt es dafür noch keine hinreichende Erklärung für das Phänomen. Eine Senstion war die Entdeckung eines Schwarzen Lochs in der Galaxie mit der Bezeichnung NGC 1277, das eine Masse von 17 Milliarden Sonnenmassen besitzt. Mittlerweile wurden sogar Schwarze Löcher mit bis zu 40 Milliarden Sonnenmassen entdeckt.

Aktive und inaktive Schwarze Löcher
Ein aktives Schwarzes Loch "saugt" aufgrund seiner Schwerkraft ständig Materie aus seiner Umgebung auf. Dabei "fällt" die Materie aus Gründen des Drehimpuls-Erhaltungssatzes nicht direkt in das schwarze Loch hinein, sondern es bildet sich vorher eine so genannte Akkretionsscheibe, in der sich die dort befindliche Materie durch Reibung extrem aufheizt, dabei ihren Drehimpuls verändert und dann erst in das schwarze Loch hineinstürzt. Diese extrem energiereiche Scheibe lässt sich als leuchtende Scheibe beobachten.
Sofern ein Schwarzes Loch jedoch alle oder den größten Teil der in seiner Nähe befindlichen Materie aufgesaugt hat und die andere Materie - wie Sterne - sich auf stabilen Bahnen um das Schwarze Loch bewegen, wird es als inaktiv bezeichnet. Das Schwarze Loch im Zentrum unserer Milchstraße ist - wie oben bereits unter der "Milchstraße" dargestellt - ein Beispiel für ein wahrscheinlich inaktives Schwarzes Loch.

Schwarze Löcher in der Milchstraße
Das Schwarze Loch im Zentrum unserer Milchstraße besitzt eine Masse von rund 20 Mio. Sonnenmassen. Daneben gibt es wahrscheinlich weitere Schwarze Löcher in der Milchstraße.

Hinweis
Sofern Objekte einem Schwarzen Loch zu nahe kommen, so werden sie die extrem große Gravitation nicht nur eingefangen sonern auch stark verformt.
Man bezeichnet dies als "Spaghettisierung. Der Begriff wurde 1988 von Stephen Hawking (geb.) in seinem Buch "A Brief History of Time" (Eine kurze Geschichte der Zeit) geprägt.
Dieser Effekt rührt daher, dass auf der dem Schwarzen Loch näherenSeite des Objekts stärkere Grvitationskräfte wirken als auf der weiter entfernten. Dadurch werden Objekte in die Länge gezogen und auseinandergerissen.
Je nähe sich Objekte dem Schwarzen Loch nähern, desto stärker macht sich der Effekt bemerkbar.

Bild eines schwarzen Lochs
Am 11. April wurde von Astronomen des Verbundes des Event Horizon Telescope eine Aufnahme eines schwarzen Lochs, das die 6,5·109–fache Sonnenmasse besitzt, veröffentlicht. Die Aufnahme stammt von einem schwarzen Loch in der Galaxie M 87, die 54 Mio. Lichtjahre entfernt ist. Die sensationelle Aufnahme stammen von dem Riesenteleskop "Event Horizon Telescope“,
das aus dem koordinierten Zusammenschluss von Teleskopen in folgenden Ländern besteht:
Arizona, Chile, Hawaii, Mexiko, Spanien und dem Südpol.

Neuen Kommentar hinzufügen